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The theory of Grossmann and Lohse �J. Fluid Mech. 407, 27 �2000�� is extended to include the effect of a
magnetic field on convection of an electrically conducting fluid. Different scaling laws are obtained depending
on whether the bulk or the boundary layers make the major contribution to the dissipation. Scalings are
obtained for both weak and strong magnetic fields. The predictions are shown to be in better agreement with
experimental data than earlier theoretical models.
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A horizontal layer of fluid, when heated from below, be-
comes unstable when the Rayleigh number Ra exceeds a
critical value Rac. Beyond this value convection sets in lead-
ing to enhancement in heat transport, which is measured by
the Nusselt number Nu. For Ra�Rac the convective motion
becomes turbulent and there has been considerable interest in
trying to predict the dependence of Nu on Ra for very high
values of Ra. Experimental studies �1–11� show a power-law
dependence Nu�Ra� with values of � between 1/4 and
1/2. These experimental observations have been compared
with available theoretical models �12–23�. One of the most
comprehensive of these is the Grossmann and Lohse �GL�
model �20�, further extended in �21–23�, which considers
different regimes and seems to explain well the 1/4, 2 /7,
and 1/3 power laws observed at relatively low, intermediate,
and very high values of Ra. In a more recent study,
Grossmann and Lohse �24� considered the role of plumes
and used a decomposition for the thermal dissipation rate
into the plume and the background contributions instead of
that into the boundary layer and the bulk contributions �20�.
This was motivated by numerical studies of high Ra convec-
tion, although there was no disagreement between the earlier
theory �20� and experiments as far as the scaling laws were
concerned. Further, even with the new theory the scaling
laws remained unchanged. At present there is not enough
numerical or experimental data to decide whether plumes
play a significant role in high-Ra magnetohydrodynamic
convection.

One reason for interest in high-Ra convection is that in
astrophysics and geophysics we often have convection oc-
curring at extremely high values of Ra. Usually a magnetic
field is present and it is known that a magnetic field can
suppress convection when the fluid is electrically conduct-
ing. Therefore, it would be of interest to study the effect of a
magnetic field on high-Ra convection of an electrically con-
ducting fluid. Some theoretical and experimental work on
this has been reported �25–28�; however, there is still not
very good agreement between theoretical models and experi-
mental data. The numerical results show very good agree-
ment with the experimental data but these computations are
time consuming and, therefore, there is need for simple the-
oretical models to explain the experimental results. With that
aim, in this study, we generalize the GL model �20� to in-
clude the effect of an imposed vertical magnetic field.

The governing equations for an electrically conducting
fluid in a magnetic field, using the Boussinesq approxima-
tion, are

�u

�t
+ u · �u = −

1

�
� p +

1

�
J � B + g��k + ��2u , �1�

� · u = 0, �2�
�B

�t
+ u · �B = B · �u −

1

�
� � J , �3�

� · B = 0, �4�
	J = � � B , �5�

��

�t
+ u · �� = 
�2� , �6�

where u is the fluid velocity, B is the magnetic field, J is the
current density, � and p are the temperature and pressure, �,
�, �, �, and 
 are the density, coefficient of thermal expan-
sion, kinematic viscosity, electrical conductivity, and thermal
diffusivity of the fluid, g is the acceleration due to gravity,
and 	 is the permeability, assumed to be that of vacuum. SI
units are used so that the units of 	, B, J, and � are T m/A,
T, A/m2, and ohm−1/m. Here temperature is measured with
respect to a reference temperature and pressure with respect
to the hydrostatic pressure field corresponding to this refer-
ence temperature. We have used a Cartesian coordinate sys-
tem �x ,y ,z� with unit vectors �i , j ,k� along the coordinate
axes. The fluid is assumed to occupy the region −��x ,y
��, 0�z�L. Gravity is in the direction −k. We assume
that the boundaries at z=0 and L are rigid and have infinite
thermal and electrical conductivity. Each of the boundaries is
assumed to be maintained at constant temperature. Choosing
the temperature of the upper boundary as the reference tem-
perature and assuming that a temperature difference  is im-
posed across the layer to drive convection, the appropriate
boundary conditions are �29�

u = 0 at z = 0 and L , �7�
� =  at z = 0, � = 0 at z = L , �8�

Bz = B0, Jx = Jy = 0 at z = 0 and L , �9�

where B0 is the imposed uniform vertical magnetic field.
Following Ref. �20� the starting point for our analysis is

the dissipation rates

�u = ����u�2�, �J =
1

��
��J�2�, �� = 
�����2� , �10�

where angular brackets denote volume averages over the
fluid layer. Here �u and �� are same as in Ref. �20� while �J
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is the averaged Ohmic dissipation rate per unit mass. We
assume a stationary state where all volume averages are time
independent. Using the governing equations these can be
shown to obey certain rigorous relations. Scalar-multiplying
Eq. �1� by u and averaging over the fluid layer, we obtain

0 =
1

�	
�u · �B · �B�� + �g�w�� − ����u�2� , �11�

where w is the z component of u. Again scalar-multiplying
Eq. �3� by B and averaging over the fluid layer, it can be
readily shown using Eq. �9� that

0 = �B · �B · �u�� −
	

�
��J�2� . �12�

From Eqs. �11� and �12� we obtain �25�
�u + �J = �g�w�� . �13�

This equation states that the sum of the viscous and Ohmic
dissipation rates is equal to the rate of energy released due to
buoyancy force. From Eq. �6� it can be shown that �16�

�w�� =



L
�Nu − 1� , �14�

where the Nusselt number is defined by Nu= �L /�
��−d�̄ /dz�z=0, the overbar on � denotes an average over a
horizontal plane, and it is assumed that horizontal averages
again are time independent. From Eqs. �13� and �14� we
obtain

�u + �J =
�3

L4

Ra

Pr2 �Nu − 1� , �15�

where the Rayleigh number Ra=g�L3 /
� and the Prandtl
number Pr=� /
. Multiplying Eq. �6� by � and averaging
over the fluid layer, we obtain �16�


�����2� = −



L
	d�̄

dz



z=0
. �16�

It readily follows that

�� = 

2

L2 Nu. �17�

Dissipation takes place both in the bulk and in the bound-
ary layers which form near the walls. In the absence of a
magnetic field a hydrodynamic boundary layer of thickness
�u and a thermal boundary layer of thickness �� form, with

�u � L/Re1/2, �� � L/Nu, �18�

where it has been assumed that flow inside the boundary
layers is laminar. In the presence of a strong magnetic field
both the velocity and the magnetic field vary rapidly inside a
Hartmann boundary layer of thickness �H �30�, while the
temperature varies rapidly in the thermal boundary layer of
thickness ��. Again assuming laminar flow inside the bound-
ary layers it can be shown that

�H � L/Q1/2, �� � L/Nu, �19�

where Q=B0
2�L2 /�� is the Chandrasekhar number. The deri-

vation of �H is similar to that for �u and involves ordering of

the terms in the governing equations. Following Ref. �20� we
decompose the globally averaged dissipation rates into their
boundary layer �BL� and bulk contributions

�u = �u,BL + �u,bulk, �20�

with similar expressions for �J and ��.
In the bulk Grossmann and Lohse �20� assumed that there

is a balance between the dissipation and the large-scale con-
vective term. In the absence of a magnetic field this leads to

�u,bulk �
U3

L
�

�3

L4Re3, �21�

where the Reynolds number is defined by Re=UL /�. Here U
is the mean large-scale velocity near the boundaries of the
cell, the “thermal wind” first observed by Krishnamurti and
Howard �31�. When a magnetic field is present, we assume
that in the magnetic induction equation the balance is be-
tween the dissipation term, which can also be written as
��2B, where the magnetic diffusivity �=1/	�, and the term
B ·�u. Assuming that the induced magnetic field is �B,
this requires �B /L2�B0U /L. Consequently

�J,bulk �
1

��

�B�2

	2L2 �
B0

2U2

�	�
=

�3

L4Re3 Q

Re
. �22�

Therefore, when Q�Re, �u,bulk��J,bulk and consequently
�u,bulk can be neglected compared to �J,bulk. The ordering for
B would seem to lead to a contradiction in the momentum
equation since

�1

�
J � B� �

B0B

�	L
�

B0
2U

�	�
�

U2

L

Q

Re
,

�u · �u� �
U2

L
.

For Q�Re it is not clear what balances the J�B force.
However, it is known �32,33� that in strongly magnetized
plasmas the magnetic field relaxes to a force-free state so that
�J�B�� �J��B�. Then the �J�B� term can be small enough to
be balanced by the other terms in the momentum equation. In
the temperature equation again we assume a balance between
the dissipation and the large-scale convective term. When
�u ,�H���, the appropriate velocity scale is U and we have

��,bulk �
U2

L
= 


2

L2 Pr Re. �23�

In the absence of a strong magnetic field if �u���, where
the thermal BL meets the bulk, the velocity is U�� /�u and
this provides the appropriate velocity scale. Consequently

��,bulk �
��

�u

U2

L
= 


2

L2

Pr Re3/2

Nu
. �24�

Similarly, in the presence of a strong magnetic field if �H
��� the appropriate velocity scale is U�� /�H and conse-
quently

��,bulk �
��

�H

U2

L
= 


2

L2

Pr ReQ1/2

Nu
. �25�
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We next derive estimates for dissipation rates in the
boundary layers. In the absence of a magnetic field we have
�20�

�u,BL �
�3

L4Re5/2. �26�

In the presence of a strong magnetic field we have

�u,BL � �
U2

�H
2

�H

L
�

�3

L4Re2Q1/2, �27�

�J,BL �
1

��

�B�2

	2�H
2

�H

L
�

�3

L4Re2Q1/2. �28�

Estimating ��,BL again leads to the same expression as in Eq.
�17�. So Grossmann and Lohse �20� went back and did an
ordering of the terms in Eq. �6� to derive certain relations.
Following that procedure, for �u ,�H��� we obtain

Nu � Re1/2Pr1/2, �29�

while, in the absence of a magnetic field, for �u���

Nu � Re1/2Pr1/3, �30�

and in the presence of a strong magnetic field, for �H���,

Nu � Re1/3Pr1/3Q1/6. �31�

We now derive scaling laws following the procedure of
Ref. �20�. As in Ref. �20� we consider the four regimes �I�
both �u+�J and �� are dominated by their BL contributions;
�II� �� is dominated by ��,BL and �u+�J is dominated by
�u,bulk+�J,bulk; �III� �u+�J is dominated by �u,BL+�J,BL and ��

is dominated by ��,bulk; and �IV� both �u+�J and �� are bulk
dominated. Grossmann and Lohse �20� further use subscripts
l and u to distinguish the situations �u��� and �u���

which, in the absence of a magnetic field, correspond to low
and high Pr.

For very high Ra the boundary layers are very thin and we
expect the dissipation rates to be dominated by contributions
from the bulk. Therefore, this is in regime IV and if we
assume �u ,�H��� it is regime IVl. Substituting for �u and �J
from Eqs. �21� and �22� in Eq. �15� and for �� from Eq. �23�
in Eq. �17� we obtain

Ra

Pr2Nu � Re3	1 + C
Q

Re

 , �32�

Nu � Pr Re, �33�

where C is a constant that depends on the ratio of Ohmic to
viscous dissipation. From Eqs. �32� and �33� it readily fol-
lows that

Nu �
Ra1/2Pr1/2

�1 + CQRe−1�1/2 . �34�

For Q=0 this reduces to Nu�Ra1/2Pr1/2 as in Ref. �20�. For
Q=0 we also obtain Re�Ra1/2Pr−1/2. For small values of Q
we can use this expression in the term involving Q to obtain

Nu �
Ra1/2Pr1/2

�1 + C1QRa−1/2Pr1/2�1/2 , �35�

where C1 is a constant. This shows that Nu decreases with
increase in Q, as expected. When a strong magnetic field is

present so that Q /Re�1, �u can be neglected in comparison
with �J, and Eq. �32� can be approximated by

Ra

Pr2Nu � Re2Q . �36�

From Eqs. �33� and �36� we readily obtain

Nu �
Ra

Q
. �37�

This is identical with the relation derived in Ref. �26� using a
local stability criterion for the boundary layer. We now con-
sider regime IVu where �u ,�H���. Equation �32� still re-
mains valid. In the presence of a weak magnetic field, sub-
stituting for �� from Eq. �24� in Eq. �17�, we obtain in place
of Eq. �33�

Nu �
Pr Re3/2

Nu
. �38�

Following a procedure similar to that for regime IVl, in the
presence of a weak magnetic field we obtain

Nu �
Ra1/3

�1 + C2QRa−4/9Pr2/3�1/3 , �39�

where C2 is again a constant. When a strong magnetic field is
present �H is very small and we do not expect the condition
�H���, required for the configuration to be in regime IVu, to
be satisfied.

In laboratory experiments using mercury we have �u ,�H
���. Therefore, as Ra is reduced we expect to go from re-
gime IVl to regime IIl. In this regime Eq. �32� still holds,
together with Eq. �29�. From these two equations it can be
readily shown that in the presence of a weak magnetic field
we have

Nu �
Ra1/5Pr1/5

�1 + C3QRa−2/5Pr3/5�1/5 , �40�

where C3 is a constant, while in the presence of a strong
magnetic field Eq. �32� is replaced by Eq. �36� and we have

Nu �
Ra1/3

Q1/3 . �41�

As we decrease Ra further we expect to go to regime I.
Substituting for �u and �J from Eqs. �27� and �28� in Eq. �15�,
we obtain

Ra

Pr2Nu � Re2Q1/2. �42�

Further, assuming that �H���, Eq. �29� is applicable. From
these two equations we readily obtain

Nu �
Ra1/3

Q1/6 . �43�

The relative weight of the two dissipation terms in Eq.
�15� does introduce an additional parameter. However, in the
limiting cases where one of the terms is assumed negligible
this additional parameter does not appear. One limiting case
is the original GL model �20� where �J is not present; the
other is the strong magnetic field regime where �u is consid-
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ered negligible compared to �J. However, in general, an ad-
ditional parameter is present as seen in Eqs. �35�, �39�, and
�40�. This parameter, like the prefactors in the GL model,
will have to be determined from experiments.

Bhattacharjee et al. �26� provide the scaling laws Nu
�Ra/Q and Nu�Ra1/2 /Q3/4 in two different regimes. The
experimental data of Cioni et al. �27� show very good agree-
ment with their predictions in the first regime but in the
second regime their data show a much weaker dependence
on Q, which is better approximated by Nu�Ra0.43/Q0.25.
This is quite close to our predictions in regimes I and II.
Grossmann and Lohse �20� had also shown that some em-
pirical fits to experimental data can be explained by super-
posing two scalings. We have derived the scalings in Eqs.
�37� and �43� by neglecting the dissipation in the boundary
layers and in the bulk. Taking into account that both contri-
butions are present we can use a superposition of these two
scalings. Since the power-law exponents for Ra and Q in
these two scalings bracket the values 0.43 and −0.25 of the
fit to experimental data it appears that a suitable superposi-
tion can approximate the experimental data well. However, it
should be pointed out that agreement between theory and
experiment, in the absence of a magnetic field, was demon-
strated using data spanning several decades in Ra. The ex-
perimental data for convection in the presence of a magnetic
field do not span even one decade in Q while the numerical
results reported consist of just five data points. Therefore,
more data are required before the question of quantitative
agreement can be settled. In the absence of a magnetic field
there have been theoretical predictions supported by some
experimental observations that the power-law exponent goes
up for very high values of Ra. The experimental observations
in the presence of a magnetic field show just the opposite

trend. However, for very high values of Ra our model pre-
dicts a linear increase of Nu with Ra in the presence of a
strong magnetic field. Thus the power-law exponent is twice
what it is in the absence of a magnetic field, assuming that
�u ,�H���. A similar trend was obtained by Montgomery
�25� who found bounds for Nu which scale as Ra3/8 when the
magnetic field is weak but as Ra3/4 in the presence of a
strong magnetic field. The bounds also contain a numerical
factor which again depends on Ra but even when this is
taken into account we expect the effective power-law expo-
nent to be higher when a strong magnetic field is present.
Since the experiments of Cioni et al. �27� did not go to very
high values of Ra it is difficult to say what the trend would
be in higher ranges of Ra. One limitation of the present study
is that for high values of Ra the boundary layers can become
turbulent and this has not been considered in our model. Also
since our model assumes fully turbulent flow it cannot pre-
dict the scalings just beyond the onset of instability where
the experimental findings are explained well by the local
stability theory �26�. In conclusion our model shows better
agreement with experimental data especially in predicting
the Q dependence of Nu but more experimental data and
numerical results and further refinement of theory are needed
before a firm statement about quantitative agreement can be
made. We have also provided scalings that show the effect of
a weak magnetic field which has not been done earlier to our
knowledge, and these are of practical importance since con-
vection in stars is usually in the kinetic regime �34� where
the magnetic field is weak.
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